If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-40x-264=0
a = 1; b = -40; c = -264;
Δ = b2-4ac
Δ = -402-4·1·(-264)
Δ = 2656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2656}=\sqrt{16*166}=\sqrt{16}*\sqrt{166}=4\sqrt{166}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-4\sqrt{166}}{2*1}=\frac{40-4\sqrt{166}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+4\sqrt{166}}{2*1}=\frac{40+4\sqrt{166}}{2} $
| 2/3(6x+3)=8x+12 | | 3(2.3x-5.1)+7.9=2.7x | | 5(k+4)-2k=7k+20 | | r+0=10.2 | | 10i-8i=0 | | -1/4x+x=2000 | | 45÷x=-9 | | r-r+2r=16 | | 6-(19+i)=0 | | -18x+9=-3+16x | | 8x−67=96 | | x+.025x=2000 | | (5+3i)-(9-6i)=0 | | 8x−67=96+- | | 2x-5=4x+4 | | 9m+(-6)=15 | | 6v+18v-66=-6 | | 3x+3+5x-11=180 | | 32.70+16.85s=81.75 | | (2-9i)+(3+6i)=0 | | 9m+-6m=15 | | (5-9i)+(7+8i)= | | 49x^2+7x+21=0 | | 12x-2x-7x+4x-5x=18 | | -8×3+4-(-1x)=9 | | 4x²+32x=0 | | 8(x-3)-8=-6(x-2) | | 12x-2x−7x+4x−5x=18 | | T=2.00+4.00m | | 12x−2x−7x+4x−5x=18 | | 1.2x-10=0.2+14 | | 5x+10=3x-9 |